Stadthaus
Will Pryce

Stadthaus

Waugh Thistleton Architects as Architects

Introduction Designed in collaboration between architects Waugh Thistleton, structural engineers Techniker, and timber panel manufacturer KLH, Stadthaus, a nine-storey residential building in Hackney, London, is thought to be the tallest timber residential structure in the world. Stadthaus is the first high density housing building to be built from pre-fabricated cross-laminated timber panels. It is the first building in the world of this height to construct not only load-bearing walls and floor slabs but also stair and lift cores entirely from timwber. Waugh Thistleton are committed to reducing the environmental impact of architecture. In the endeavour to build buildings that reduce our impact on the planet we see it as vital not only to consider the energy usage over the life of the building but also the energy expended in producing the building. For some years we have been researching the use of solid timber structures in housing to replace the accepted route of concrete and steel. Timber stores 0.8 tonnes of carbon within 1 cubic metre and is a replenishable material. In comparison the production of both concrete and steel are one-way energy intensive processes that release large amounts of carbon dioxide into the atmosphere. The panels can also be easily demounted and used as an energy source at the end of the building’s life. So the case for timber was made to the client and the local authority both in terms of the environmental consideration and potential economies to cost and programme. Design approach The form of the design was predetermined by a number of factors. Previous architects had received two planning refusals on the site and as a result the acceptable parameters for the building’s approval were clearly defined. The site area is 17m x 17m and bound on all sides by other residential buildings. An extrusion of the site area set the building’s plan form and the height at nine stories was set as a maximum, before over shadowing would become an issue. It was a requirement from client Metropolitan Housing Trust that a separate ground floor entrance was provided for the affordable units, this resulted in a mirrored floor plan from east to west, with an identical entrance to each aspect. Both tenures are served by an individual staircase and lift. The five upper storeys are designated for private sale and the three lower storeys for social housing. The majority of social housing is made up of family apartments, which overlook the play area to the rear of the building. Housebuilder Telford Homes specifically required that the interiors were consistent with a standard developer specification, which means that inside the apartments feel completely conventional, belying the revolutionary nature of their structure. Construction Method: The building was assembled using a structural cross-laminated timber panel system. The timber panels are produced in Austria by KLH using Spruce planks glued together with a non-toxic adhesive. The waste timber is converted to fuel powering both the factory and local village. Each panel is prefabricated including cutouts for windows and doors and routed service channels. As the panels arrived on site they were immediately craned into position and fixed in place. Four carpenters assembled the eight-storey structure in twenty-seven days. The speed of the construction in such a densely populated environment is especially relevant, as was the lack of noise and waste, creating far less intrusion on the local community than a traditional concrete frame construction. Designing a building constructed from load bearing panels creates a number of opportunities. Any internal wall can become a party wall and have a significant portion removed from the surface area as openings. This simple flexibility allowed for different plan types up and down the building and an animated façade where windows were placed according to the best advantage. Typically a new technology in construction provides a reduced volume of building material; lighter weights produce cheaper faster buildings. The impression of solidity once inside this building is evident, the interior spaces and the acoustic they give off affirm a sense of place and home. Traditional trades and methods followed on once the structure of each floor was complete. The enthusiasm of the work force for the construction and the ease of the build was a benefit beyond those we anticipated. The building was completed in 49 weeks, estimated to be a saving of five months over a notional concrete frame construction and occupied ahead of programme in January 2009. Sustainability Using a bulk timber panel system affects the carbon footprint of the building in three ways. Firstly, the production of cement produces 870 kg of carbon dioxide. This equates to 237 kg of carbon per tonne. We have estimated that if this building were to be a concrete structure, it would contain approximately 950 cubic metres of concrete. This would require 285 tonnes of cement and would, therefore, produce approximately 67,500 kg of carbon. Additionally, the production of steel produces 1750 kg of carbon dioxide, which is 477 kg of carbon per tonne. It is estimated that the building would, if built in reinforced concrete, require about 120 tonnes of steel, the production of which would have generated 57,250 kg of carbon. We have used 901 cubic metres of timber within the building. Timber absorbs carbon throughout its natural life and continues to store that carbon when cut. The fabric of Stdathaus will store over 186,000 kg of carbon. Thus, our chosen construction method has resulted in a reduction in the carbon load of the building of 67,500 + 57,250 + 186,000 = 310,750 kg of carbon. This is equivalent to over 310 tonnes of carbon. The estimated carbon dioxide produced in the generation of the energy for the building, including the transportation of the timber panels from Austria, is 10,000 kg/c/yr. This has been entirely offset by the building’s carbon saving for some 21 years. Building high in timber Concerns associated with timber buildings are predominantly related to acoustics and fire protection. Timber buildings are classified as poor in terms of their acoustic performance due to the light structure as compared to reinforced concrete and masonry. However, cross-laminated solid timber panels have a significantly higher density than timber frame buildings. They provide a solid structural core on which different, independent and separating layers can be added. This layering principal overcomes any acoustic or sound transfer issues. In Stadthaus an economic layering strategy of stud walls, floating floor build-ups and suspended ceilings, gave sound attenuation far in excess of building regulations (58 - 60db). Regulations in Europe have meant there are no precedents for Stadthaus. However, architectural and engineering methods in timber construction pioneered by Waugh Thistleton and Techniker are now accepted internationally. By gaining the necessary certificates from both NHBC and BRE, both of which treated Stadthaus as a pilot scheme, we consider that timber panels are the building material of an environmentally conscious future.

Project Credits
Product Spec Sheet

Products Behind Projects
Product Spotlight
News
Fernanda Canales designs tranquil “House for the Elderly” in Sonora, Mexico
12 Dec 2024 News
Fernanda Canales designs tranquil “House for the Elderly” in Sonora, Mexico

Mexican architecture studio Fernanda Canales has designed a semi-open, circular community center for... More

Australia’s first solar-powered façade completed in Melbourne
12 Dec 2024 News
Australia’s first solar-powered façade completed in Melbourne

Located in Melbourne, 550 Spencer is the first building in Australia to generate its own electricity... More

SPPARC completes restoration of former Victorian-era Army & Navy Cooperative Society warehouse
11 Dec 2024 News
SPPARC completes restoration of former Victorian-era Army & Navy Cooperative Society warehouse

In the heart of Westminster, London, the London-based architectural studio SPPARC has restored and r... More

Green patination on Kyoto coffee stand is brought about using soy sauce and chemicals
10 Dec 2024 News
Green patination on Kyoto coffee stand is brought about using soy sauce and chemicals

Ryohei Tanaka of Japanese architectural firm G Architects Studio designed a bijou coffee stand in Ky... More

New building in Montreal by MU Architecture tells a tale of two facades
10 Dec 2024 News
New building in Montreal by MU Architecture tells a tale of two facades

In Montreal, Quebec, Le Petit Laurent is a newly constructed residential and commercial building tha... More

RAMSA completes Georgetown University's McCourt School of Policy, featuring unique installations by Maya Lin
10 Dec 2024 News
RAMSA completes Georgetown University's McCourt School of Policy, featuring unique installations by Maya Lin

Located on Georgetown University's downtown Capital Campus, the McCourt School of Policy by Robert A... More

MVRDV-designed clubhouse in shipping container supports refugees through the power of sport
9 Dec 2024 News
MVRDV-designed clubhouse in shipping container supports refugees through the power of sport

MVRDV has designed a modular and multi-functional sports club in a shipping container for Amsterdam-... More

Archello Awards 2025 expands with 'Unbuilt' awards categories
9 Dec 2024 Archello Awards
Archello Awards 2025 expands with 'Unbuilt' project awards categories

Archello is excited to introduce a new set of twelve 'Unbuilt' project awards for the Archello Award... More